A Neural Adaptive Controller in Flapping Flight

نویسندگان

  • Bo Cheng
  • Xinyan Deng
چکیده

In this paper, we propose a neural adaptive controller for attitude control in a flapping-wing insect model. The model is nonlinear and subjected to periodic force/torque generated by nominal wing kinematics. Two sets of model parameters are obtained from the fruit fly Drosophila melanogaster and the honey bee Apis mellifera. Attitude control is achieved by modifying the wing kinematics on a stroke-by-stroke basis. The controller is based on filtered-error with neural network models approximating system nonlinearities. Lyapunov-based stability analysis shows the asymptotic convergence of system outputs. We present simulation results for angular position stabilization and trajectory tracking. Trajectory tracking is illustrated by two cases: saccadic turning and sinusoidal variation in the yaw angle. The proposed controller successfully regulates flight orientation – roll, pitch and yaw angles – by generating desired torque resulting from tuning parameterized wing motion. Results furthermore show similarities between simulated and observed turning from real insects, suggesting some inherent properties in insect flight dynamics and control. The proposed controller has potential applications in future flapping-wing Micro Air Vehicles (MAVs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles

Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...

متن کامل

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method

The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...

متن کامل

Adaptive control of a millimeter-scale flapping-wing robot.

Challenges for the controlled flight of a robotic insect are due to the inherent instability of the system, complex fluid-structure interactions, and the general lack of a complete system model. In this paper, we propose theoretical models of the system based on the limited information available from previous work and a comprehensive flight controller. The modular flight controller is derived f...

متن کامل

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JRM

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2012